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Abstract -
Autonomous cars are frequently fitted with radars, cam-

eras, and LiDAR due to their complimentary capacities of
environment awareness. However, when the host vehicle’s
LiDAR is negatively impacted by challenging weather cir-
cumstances like snow in varied snowfall conditions, precisely
following the trajectory of the previous vehicle becomes im-
perative .Due to the sparse nature of LiDAR data, which
can be influenced by a variety of variables such as the wind
or snow conditions, it is also increasingly difficult to pre-
cisely remove the snow while maintaining the point clouds’
details. The complete, learning-based strategy put out in
this study attempts to address this urgent issue.Intensity
and spatial-temporal feature-based de-snowing, QLGMM,
weighted technique, and switch RNN with a dual-level long
short-term memory (LSTM) are used to track the trajectory
path in snowy weather for various snowing levels.
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1 Introduction and Background

A major challenge for fully autonomous military vehi-
cles is navigating in bad weather since they lack the sensors
to estimate depth, locate obstacles, and maintain traction.
By getting troops out of high-risk environments such as
snowstorms, autonomous vehicles can reduce casualties
in the coldest places, such as Kargil in India, where the
lowest temperature in winter can be as low as -35 degrees
and the likelihood of contracting hypothermia is high. Be-
cause of the high level of precision in the ranging results,
point clouds created by LiDAR could be a useful com-
plement [1]. Environmental elements like snowflakes,
fog, and raindrops cause noise in the point clouds [2],[3].
These airborne particles deflect laser beams, causing noise
to appear in the corresponding locations in point clouds.
However, studies on de-noising for snow have not been
conducted [4],[5].
De-snowing for LiDAR, or fusing the de-noised point

clouds with the radar data stream, could help predict trajec-
tory tracking under different snow conditions. Intensity is
part of the LiDAR measurement outcomes [6], and this pa-
per focuses on how to measure intensity in different types
of snowfall. The intensity of snow points, which reflects
the details of the environment, can be used to work out
how much snow should be de-snowed [7]. One problem
to be solved is how to use the intensity without harming
the environment.
In accordance with the angles of incidence as well as Time
of Flight (TOF), LiDAR points’ locations could be calcu-
lated [8]. Snowflakes move in various directions and at
various speeds, unlike raindrops. The motion of snow
points is readily influenced by outside variables like wind
and snowy conditions [9], [10].
The method for excluding snow-points from LiDAR data
is presented in the paper. The central concept of our
strategy is derived from two observations made in [11].
In temporal space, snow points are discrete, whereas the
placement of non-snow points is typically constant. Our
method first removes snow using an intensity-based filter
that was based on the work in [12]. A restoring method is
suggested to recover the lost points in the following stage
of the process in order to enhance the accuracy of the point
clouds. This paper proposes a de-snowing technique that
combines the snow’s intensity with the spatial-temporal
characteristics of point clouds’. Additionally, it also pro-
poses that the points in width and time (W-T) space, that
can differentiate between snow points and point clouds, be
restored.
Millimeter-wave (MMW) radars, LiDARs, and cameras
are frequently found in fully autonomous vehicles (FAVs)
in order to provide them with a driving experience that
is as human-like as possible [13]. The motion capture of
on-road users is the preliminary step in carrying out com-
plex self-driving tasks. Precise tracking employing sensor
fusion is a topic that both educators and corporate are very
interested in. Spatial reasoning on complex data and the
integration of multiple-projected paths, however, present
two significant implementation challenges.
K-means [14] and the Gaussian mixture model (GMM)
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[15] are two techniques that have been developed to group
dense data in the existing literature on spatial reasoning.
Thereinto, A complex object can be presented as a com-
bination of a finite number of Gaussian density functions
with unknown parameters, and GMM offers cutting-edge
model-free technology for fitting it. To determine the
maximum likelihood to estimate submodel parameters it-
eratively, the expectation-maximization (EM) algorithm is
introduced[16].
It is possible to fit complex components with the Gaussian
Mixture Model using cutting-edge model-free technology
(GMM). A small amount of Gaussian density functions
with uncertain attributes are combined to form the GMM.
The expectation-maximization (EM) algorithm is used [5]
to ascertain which submodel parameters have the highest
probability of being estimated accurately. The two follow-
ing significant drawbacks of the GMM-EM method are:
1) The quantity of clusters and 2) The probability that the
submodel mean coincides with the values of real-world
objects. If the centroids are not correctly reconfigured, the
target vehicle’s estimated trajectory will be off.
Motion traceability for the vehicle ahead becomes an im-
portant step in challenging snowy conditions, particularly
when LiDAR information is disrupted by snow particles.
It is important to move the GMM centroids which corre-
late with the velocity data. The integration of multi radar
information is a critical issue that must be resolved in radar
fusion.
Vision-based fusion frameworks have made it possible
to detect and track multiple objects [17] [18]. However,
because these algorithms rely on LiDAR information or
camera streams, their motion predictions are unreliable.
Recurrent neural networks (RNNs) exhibit a considerable
advantage in designing dynamic systems and trajectories
[19]. Furthermore, experiments have demonstrated the
effectiveness of vehicle motion prediction using an RNN
with LSTM cells. [20].
In previous works [21] - [22], methods for obtaining effec-
tive performance by sensor fusion were investigated. Saleh
et al. proposed a three-layer LSTM network to track the
trajectory of the pedestrian[23] and Yang et al. proposed a
JTSM for customized trajectory prediction.[22].Accurate
trajectory tracking has been hindered by RADAR valid-
range changes and LiDAR difficulties. The expansion of
automated driving’s operating environment and applica-
tion space faces a significant challenge during snowfall.
When it snows, the surrounding roads are in a different
state than they are during fair weather. This is likely to be
employed for tasks like operating snowplows that call for
previous driving experience. One problem is that, due to
snowfall and other factors, it is difficult to match the map
data with the road surface. This makes it difficult to en-
gage in safe automated driving because the lane a vehicle

is in can be hard to tell.
A number of studies have been conducted to address the
issue by simulating the uncertainties associated with error
propagation and afterwards comparing radar images [24].
In [25] LiDAR and millimetre wave radar were proposed
as a localization system. Radar image alignment was in-
correct because the confidence estimation was only done
for LiDAR data, which resulted in inaccurate confidence
level estimation. Additionally, it only takes into account
the two environmental conditions of snow and no snow.
Therefore, a learning-based method has been proposed
to track trajectories in the snow - covered climate under
various snowing conditions. The three significant contri-
butions are listed below: 1) the input LiDAR data stream
is de-snowed using intensity and spatial-temporal features
to separate snow points from point cloud data using spa-
tial geometric data. 2) To acquire the precise positions of
the clusters of compact short-range radar data, the amount
of clusters is then investigated using a Q-learning method
which is given to GMM-EM.The centroids are realigned
in order to further mitigate the position deviation based on
velocity inputs. (3) In addition, a switch dual-level LSTM
(SDL) network approach is used that relies on the recom-
mended radar-vision binary fusion technique to work with
three snowing conditions. The vehicles that are ahead
of them are tracked using SDL networks in challenging
snowy conditions.

2 Approach
Fig. 1 depicts the proposed approach’s framework.

There are three steps in the framework. Prior to restor-
ing non-noise, snow is first removed using an intensity
filter and spatial-temporal features. The second step in-
volves fusing the short-range radars (SRR) and electron-
ically scanning radar (ESR) to assist in the prediction of
trajectory tracking, which is done with the help of the
de-snowed LiDAR points. And the final step is to use a
Switch Dual-Level LSTM Network with combined filtered
point clouds and fused radar data in order to predict the
trajectory for three different modes.

2.1 De-snowing
2.1.1 Intensity-Based Filter

The ranging distance R, the incident angle, and
the reflectance all play a significant role in intensity,
according to the LiDAR principle in Eq. 1 [26].

𝐼 = 𝐻 (𝑃𝑡𝐷
2
𝑟 𝜌𝑐𝑜𝑠(𝛼)
4𝑅2 𝜂𝑠𝑦𝑠𝜂𝑎𝑡𝑚) (1)

Applying the settings in [27], the snowflake structure[28]
and the LiDAR [11], α and the reflectance of snowflakes



Figure 1. An Illustration of the proposed trajectory tracking framework.

are set . Using the measured intensity Iref and the range
Rref, another intensity Im with the range Rm could be
calculated as in Eq. 2. In this manner , an intensity
gradient of the snowflakes is obtained from several Im at
different R m.
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2.1.2 Restitution

To recover the removed points with the same character-
istics as snow points, spatial-temporal geometry features
in typical 3D and width and time (W-T) space have been
used. [11]. The amount of neighbour of a LiDAR point
pi in normal 3D space and W-T space, respectively, is de-
noted as symbols |3d| pi and |wt| pi.
1) 3D space Restitution: Based on prior hypotheses, it is
concluded in this paper that non-snow points are not iso-
lated. A point is almost certain that it is a non-snow point
if it has a lot of neighbours. The number of LiDAR points
expressed as pi (x, y, z) for which Euclidean Distance to
pi is lower than r is known as |3d| pi of pi.
Because LiDAR is a sparse sensor, when r is set too low,
there are not many neighbours in the distance. Distanced
points will be taken into consideration as noise. The neigh-
bour numbers resemble one another when r is set too high.
Snow and point clouds are difficult to separate. r is set
based on the experimental findings in [27].

2) W-T Space restitution: W-T space refers to the point
of view whose centerline is parallel to the width and time
axes . Images are viewed in W-T space using the height
direction. As a result, from the frames, it was possible to
view the movement of the pixels migrated at a particular
height. Dimension reduction is used to reduce a collection
of point cloud frames with a 4D tensor P to a 3D tensor
P. P’ is regarded as a collection of 2D frames for the W-T
space. When snow points are produced around the LiDAR,
it is not feasible to have |3d| pi alone to differentiate the
snow. Since the trajectory of some weak-intensity points,
like those from moving objects or the surface, is continu-
ous, these points are grouped together in W-T space. As
a result, it was possible to distinguish between non-snow
points and weak- intensity points.
The amount of the nearest neighbour is used to specify the
temporal feature given the constant trajectory and position
of point clouds in W-T space. pi (w, h, t), in which w, h,
and t denote the positions and stamp in the point clouds,
respectively, can be used to represent a LiDAR point in
W-T space. From time t - n/2 to time t + n/2, the number
n indicates how many point clouds are in the area. The
amount of points in a (n + 1) (n + 1) searching mask in
W-T space is indicated by the symbol |wt| pi of pi at height
h.
Prior to computing |wt| pi, point clouds are preprocessed.
In the W-T space, |wt| pi is computed. Each point’s 3D
coordinates (x, y, and z) cannot be used directly. The Prin-
cipal Component Analysis (PCA) is used to transform 3D



point clouds into 2D [29].
3) Integration Focusing on EWM: Entropy is an indicator
of system disorder, based on information theory . It is
used to determine the degree of discreteness. The degree
of discreteness increases with decreasing entropy value,
and this has a greater impact primarily on extensive as-
sessment. As a result, entropy may be used to compute
weights for various indicator models. The entropy weight
method (EWM) is a weight computation method that pro-
duces results according to the data dispersion.
In this case, |3D| pi and |wt| pi will be combined to calcu-
late a weighted average confidence score to decide if the
point must be recovered [11]. As a result, EWM is used
to compute the weights. Pi’s calculated |3D| pi as well as
|wt| pi is saved in F m×2 . Weights wj, distribution of |3D|
pi and |wt| pi expressed as pro i,j, and entropy values ej are
calculated using EWM as in [11]. After calculating w1
and w2, Eq. 3 computes a weighted Score I of pi using the
normalised |3D| pi and |wt| pi. Score i is the confidence
score used to decide if pi is the snow point when compared
to a threshold. The threshold is set as mentioned in [11].

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑤1.
|3𝐷 |𝑝𝑖

|3𝐷 |𝑝𝑖 + 1
+ 𝑤2.

|𝑤𝑡 |𝑝𝑖
|𝑤𝑡 |𝑝𝑖 + 1

(3)

2.2 Fusion of Radar Data

The Extended Kalman Filter (EKF)-filtered data from
SRRs is given to the Q-learning GMM clustering com-
ponent. To produce the fused radar stream ΦR

T ,EKF-
processed SSR data is paired with the EKF-processed ESR
data. ΦR

T and de-snowed Lidar Cloud Points ΦD
T are then

combined to form ΦRD
T. It is sent to the snowing condition

switch, a finite state machine (FSM). A dual-level LSTM
network layer and a softmax layer are coordinated by each
snowing mode. Following that, the sensor fusion block
and network blocks can be used to achieve the predicted
trajectory.

2.2.1 GMM for Clustering Based on Q-Learning

The standard GMM-EM algorithm is explained and il-
lustrated in [16], [23], and [22], and it can be written as

𝑝(𝜉𝑖𝑝 |𝜃) =
𝐾∑︁
𝑘=1

𝜌𝑘N𝑘 (𝜉𝑖𝑝 |Σ𝑘 ) (4)

where ξip = (X SRRip , Y SRR ip ) as well as Θ= {ρk, µk,
Σk} K

k=1 are model parameters and the position data
sequence.The coordinates’ index is i p, and the length of
the sequence is indicated by n p. Gaussian submodels
are represented by the number K. Multivariate Gaussian
distribution is denoted by N K (ξip |µk, Σk) , where Σk

and µk are the covariance matrix and mean vector. The
k th Gaussian sub model that satisfies has a component
weight of 0 < ρk <= 1 , and this value is represented by.
However, there is one significant flaw with plain K-means
or traditional GMM. That is to say, it is unknown how
many clusters K there will be.
K was specified in advance as a constant for the du-
ration of the implementation in the literature [15] and
[22].However, given the ambiguity and time-varying
nature of driving conditions, it is irrational to assume that
the surroundings can be divided. Noise and initialization
can have a significant impact on clustering performance,
even though K can be automatically determined by
Bayesian non parametric [16].
To this end, it is possible to develop a Q-learning-based
strategy to figure out K in this section [30]. In addition to
offering an offline Q-value table for implementation at a
lower cost in terms of computation, Q-learning can also
maintain good performance even when clustered targets
are close together. QLGMM is also unaffected by initial
conditions, noise in the data, and outliers.

2.2.2 GMM Algorithm Based on Q-Learning

A commonly applied model selection criterion, BIC
[16], [21],[31], can be employed to determine the amount
of Gaussian components K. The BIC function, denoted as
g(�̂�), is given by

𝑔( �̂�) = 𝐵𝐼𝐶 = −2 ln ( �̂�) + 𝑀𝑝 ln (𝑀) (5)

For Q-learning-based selection of K, a Markov decision
process (MDP) is presented [32]. Given that action
space A, the amount of clusters K with K being the
finite number of model components, the BIC results
necessitates the log-likelihood estimation Lˆ feedback.
The prior likelihood of the chosen course of action is
represented by Pa. A one-to-one correspondence can be
established as a result to increase the effectiveness of
training [33].
The state-action integration Q is used by Q-learning to
derive a Q-value table [34]. Every Q-value table item
is initially set to Q0 = 𝐾0

𝐵𝐼𝐶0
rather than 0, reducing the

iterative computation. K0 is a positive weight, and BIC0
stands for the previously calculated BIC value at various
K.
Using the Q-value component the result of carrying out
action at in state st while governed by 𝜋 at time interval
𝜏𝑠 is denoted by the symbol 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) , which is used
to serve the Q-value table. This value is calculated by
starting in state 𝑠𝜏𝑠 , carrying out action 𝑎𝜏𝑠 , and then
carrying out policy 𝜋. The Q-value table can be constantly
monitored from the 𝜔 th iteration to the (𝜔 + 1) th iteration
by adopting a learning rate of (0 < α≤ 1) and the temporal



difference in [34].
The quantity of radar-data clusters in the T-frame scenario
can be determined after the optimal policy 𝜋∗ is achieved.
The position data for each cluster is then determined by
feeding 𝜋∗ into the standard GMM-EM algorithm. In
contrast to using a constant [15] or the BIC traversal
calculation [16], Therefore, it is necessary to determine
how many clusters are present in each frame [15]. This
method can also offer a novelty to choose the best course
of action for time-series LiDAR data during a driving
scenario without losing generality [30].

2.2.3 Cluster Center Realignment

The Gaussian sub-models don’t take into account the
velocity information νk SRR (νx|k, νy|k) as a potential cen-
tering mismatch cause [31]. Furthermore, it is unclear how
much each vehicle weighs.So the cluster centres realigned
using a kinetic-energy-element method. Each point’s ki-
netic energy per unit mass (KEUM) is represented by the
notation �̃�𝑘𝑖𝑛 |𝑘𝑖 𝑘 and its relocated centre by the nota-
tion ξ-SRR

k . Because of the introduction of KEUM, the
re-alignment results now correspond to the actual vehicle
positions. By using this method, the suggested SRR clus-
ter centres could be more effectively linked to the ESR
data.

2.2.4 Radar Data Association

The suggested QLGMM method was used to cluster the
SRR results in the previous section. But another problem
that needs to be solved is how to combine the data from
multiple radars.
In addition to these other data, the acquired radar data
streams textPhi SRR

T andΦESR
T contain position coordinates ξ,

velocity signalsν, relative distance D, and the directionΨof
the vehicle ahead. The integrated T-frame radar stream
RT is created by combining the reconfigured QLGMM
SRR data textPhi SRR

QLGMM as well as the EKF ESR data
Φ

ESR
EKF.which is given as

ΦR
T = 𝜆1Φ

SRR
T + 𝜆2Φ

ESR
T (6)

The proximity of a target to the radar system and the
amount of radar points on a vehicle both affect how well
a vehicle detects objects with radar [35]. Due to the un-
known designed fusion weights of SRR (λ1) , detection-
area-based method is addressed focused on the radar spec-
ifications as well as fitting boundaries [30]. The detection
area is divided into five sections as in [30].
In a data-driven manner, λ1 can be developed as a hybrid
linear function in accordance with the fitting boundaries.
As a result, the filtered LiDAR data stream and fused radar
data are combined as ΦRD

T and given to the SDL networks
for trajectory prediction.

2.3 LiDAR-Fault-Tolerant Trajectory Prediciton

2.3.1 FSM for Snowing Mode Switch

In this paper, the signals of the de-snowed LiDAR
point clouds can be used to determine three snowing
modes: heavy snow mode, medium snow mode, and
light snow mode. FSM [36] [37] is created to change
between various snowing modes. The swapping logic and
the Snowing modes are represented by three states and
six transitional conditions in this FSM, similar to [30].
The Ith1 > Ith2 and 0 < Ith1 < Ith2 conditions are met by
the thresholds of snowing intensity for state transition.
Depending on how much snow is falling, the FSM holds
each state or switches to another. As long as the snowfall
intensity stays within a certain range, the current snowing
mode would be retained. Otherwise, upon meeting or
exceeding the thresholds, the state transition is enabled.
As defined below, the FSM’s switching actions include:
1 Maintain the Light Snow mode.:I >= Ith1.

2 Swap between Light Snow and the Medium Snow
mode: |I|<= Ith1.
3 Maintain the Medium Snow mode: Ith2 <I< Ith1.
4 Swap between Medium Snow and the Heavy Snow
mode: Ith1 < |I |< Ith2
5 Maintain the Heavy Snow mode: I <= Ith2.
6 Swap between Heavy Snow and the Light Snow mode:
|I|>= Ith2.

2.3.2 Dual-Level LSTM Network for Trajectory Pre-
diction

The RNN with LSTM cells enable a workable alter-
native to estimate the future trajectory because of their
improved ability of capturing long temporal correlations
[37]. The performance of a single LSTM layer, however,
is sub-par in the actual implementation [38]. Addition-
ally, an excessive number of LSTM layers will cause the
computational load to rise exponentially [39]. The hidden
state h between LSTM cells and then a softmax probability
vector y are created by each snowing mode coordinating
a dual-level-LSTM layer and a softmax layer [30]. The
LSTM (.) operator is used as the LSTM to prevent gradi-
ent vanishing.
The prediction accuracy is further improved by a coop-
erative dynamic binary fusion approach by including the
SDL layers [30]. The binary sensor choice following the
softmax operation should be represented by a block ma-
trix P𝜏 = [I𝜏 , O𝜏], [O𝜏 , I𝜏], I𝜏 , O𝜏 𝜖 R, where O𝜏 and
I𝜏 are the zero matrix and the identity matrix at a time
step, respectively. y𝜏 = P𝜏 (1) = [I𝜏 , O𝜏] indicates using
radar data, and y𝜏 = P𝜏 (2) = [O𝜏 , I𝜏] indicates choos-
ing de-snowed LiDAR data. The foremost sources to the
suggested SDL network are orientation, relative distance



and longitudinal velocity signals from LiDAR and radar
streams. The results of selection probability indicate ”1”
for radars only whereas ”0” for only de-snowed LiDAR.

2.4 Light Snow Mode

Due to the sparse snow or clear weather in the Light
Snow mode, the result of the proposed method would be
from LiDAR data. In this mode the LiDAR point clouds
will not have noise from the snow as the amount of snow
will be less or none, therefore the point clouds from the
de-snowed LiDAR can be used to predict the trajectory
tracking.

2.5 Medium Snow Mode

The outcome of the suggested approach might alter be-
tween fused radar data and the de-snowed LiDAR method
in medium snowing condition as the intensity may vary
from low to high and the LiDAR data might have more
noise. Therefore, the proposed QL-GMM+SDL method
is the optimal solution for the given mode.

2.6 Heavy Snow Mode

In this condition with de-snowed LiDAR data, there is
the possibility of two types of detection failures: miss
detection and mishap. Detecting objects is more challeng-
ing when using de-snowed LiDAR data in this mode. In
this initialization region, the radar stream is a necessary
component of the proposed data fusion.

3 Conclusion
Navigating inclement weather presents a significant

challenge for fully autonomous vehicles. Snow particu-
larly confounds pivotal sensor data that a vehicle needs
to gauge depth, find obstacles, and maintain traction. For
autonomous vehicles operating in a variety of snowy
circumstances, a de-snowing method for LiDAR point
clouds and an integrated learning-based vehicle tracking
solution is suggested in this paper. The spatial-temporal
features retrieved from 3D and W-T space are used to
filter out snow points and restore non-snow points. This
solution includes a weight scheduling approach for multi-
radar integration, an SDL network for trajectory tracking
in three snowfall conditions, and a Q-learning-based
GMM-EM algorithm for compact data aggregation. One
of the two promising enhancements of the QLGMM
algorithm is the statistical determination of the number of
clusters by Q-learning. Suggested re-alignment concepts,
in contrast, can eliminate the positional incompatibilities
between the GMM cluster centres and actual automo-
biles.Additionally, to create a fused radar data stream,
QLGMM SRR cluster centres can be linked to ESR data

based on the EKF. To improve the accuracy of vehicle
tracking, an FSM-based SDL network model with a
binary fusion method that matches the different snowfall
conditions is designed. The proposed method ingeniously
enhances the radar-vision tracking efficiency when faced
with different environmental conditions, such as snowy
weather in difficult snowy circumstances, making it a
promising replacement for humans in dangerous military
operations.
The results of the simulation model and evaluation of
the proposed method will be compared and analyzed
in the future. The emphasis of upcoming work will
be on implementing suggested algorithms in real-time.
In conditions with snowfall, it may not be possible to
match the pattern of the road surface, so A robust system
must reject matching results or use additional sensors
to make up for them. There this idea will be further
extended to have an integrated multi-sensor fusion Vehicle
Localization and Trajectory Tracking Framework under
different snow conditions.
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